

Understanding Robotic Assisted TKA with Digital Gap Planning

Dr Amber Randall

DECLAIRE LAMACCHIA

Technology Overview Dr John Keggi

What Are We Aiming For? Dr Jeffrey DeClaire

Challenging Tradition to Optimize Stability Dr Jeffrey Lawrence

Data Driven Decision Making: Bringing Efficiency to the OR Dr Amber Randall

Technology Overview Dr John Keggi

What Are We Aiming For? Dr Jeffrey DeClaire

Challenging Tradition to Optimize Stability Dr Jeffrey Lawrence

Data Driven Decision Making Dr Amber Randall

- Technique Recap
- Clinical Guidelines
- Corin Joint Arthroplasty Registry (JAR)
- Managing An Efficient OR

Part 1: Technique Recap

Predictive Balancing Surgical Technique Overview

Corin BalanceBot[™]Initial Assessment Insert BalanceBot[™]and bring knee through range of motion

Part 2: Clinical Guidelines

Target Balance

Extension

MidFlexion

Target Alignment

- Long leg alignment did **not** correlate with outcome
- Balance may have a greater effect on outcome than alignment
- What is the safe *limit* of non-neutral alignment?

Soft Tissue Releases

- Predictive balance reduces the rate of soft tissue release across all deformities
- Knees with increased soft tissue releases reported poorer KOOS QOL, Sports and Symptoms scores
- When should a bone recut be performed *rather* than a release?

Part 3: Corin Joint Arthroplasty Registry

Corin Joint Arthropasty Registry (JAR)

Patient Profiling Demographics Pre/Rehabilitation PROMs, Outcomes **Activity Monitoring**

PMS

> Data collection through entire JA Journey

> Big data analysis for patient specific care

- 2447 OMNIBotics cases recorded in the registry
- Mean = 4.9° varus
- SD = 7.0°

- 2447 OMNIBotics cases recorded in the registry
- Mean = 4.9° varus
- SD = 7.0°

- Inlier defined as between -3° 10° varus
- 27% knees present outlier tibial anatomy

• 2447 OMNIBotics cases recorded in the registry

θ

- Mean = 1.5° valgus
- SD = 5.5°

- 2447 OMNIBotics cases recorded in the registry
- Mean = 1.5° valgus
- SD = 5.5°

Inlier defined as between -2° – 6° valgus

θ

• 34% knees present outlier femoral anatomy

- 2447 OMNIBotics cases recorded in the registry
- Mean = 2.3 mm imbalance
- SD = 4.6 mm

- 2447 OMNIBotics cases recorded in the registry
- Mean = 2.3 mm imbalance
- SD = 4.6 mm

- Inlier defined as between -3 6 mm looser on medial side
- 32% of knees present with outlier joint balance in extension

Pre-op Joint Imbalance Flexion

- 2447 OMNIBotics cases recorded in the registry
- Mean = 2.3 mm imbalance
- SD = 4.6 mm

- 2447 OMNIBotics cases recorded in the registry
- Mean = 2.3 mm imbalance
- SD = 4.6 mm

• 30% of knees present with outlier joint balance in extension

Variable	Frequency (%)
Tibial VV (-3° - 10°)	27
Femoral VV (-2° – 6°)	34
Pre-operative extension balance (-3 – 6 mm)	32
Pre-operative flexion balance (-3 – 6 mm)	30
Satisfies at least 1 criteria	69

So how do I do this efficiently in the OR?

Part 4: Managing an Efficient OR with OmniBotics

Background

Education and training:

- A.B., Harvard and Radcliffe Colleges
- MD, Harvard Medical School
- Internship and Residency: UMass Medical Center
- Fellowship: Otto Aufranc fellowship in Adult Reconstruction, Boston, MA
- My evolution and history with respect to soft-tissue management in TKA

My OMNIBotics Experience

- Began OMNIBotics in July of 2017
- BalanceBot in October of 2017
- Average 4-5 knees and 4-5 hips per day, in 2 rooms with dedicated staff
- Approximately 600+ cases per year

The beginnings: Why and how?

Soft tissues

- Bony alignment and measured resection
- Manual guides, intramedullary versus extramedullary
- Femur first preparation
- Memorizing algorithms of releases to employ to balance gaps after resections already completely made

Soft tissues

- Traditional methods versus navigation: a natural evolution
 - More accurate bony alignment
 - Sometimes, inaccurate bone cuts contributed to inequal gaps
 - With navigation, we became better at preparing the bone

Soft tissues

"Cheated navigation"

A game of sorts I used to play, to see if I could adjust the navigated parameters in such a way to "predict" a well balanced knee

I began to cut distal femur first, then the tibia, and use a tensioner in flexion

Running an Efficient OR

Running an Efficient OR with OMNIBotics

- Multifactorial:
 - Preparation and planning (surgeon must oversee all steps)
 - Precise division of labor
 - Orthopedic specialty hospital
 - Dedicated scrub and RN staff, with cross-training
 - 2 scrub techs per case
 - 2 assistants per case (PA and CFA)
- Staff retention is critical

Timeline of Operation

- ▶ 2 cases 1 easy, 1 hard (this is the important bit)
- Dr Randall to communicate which cases

Average Operation: 171 cases

- Average Total Tourniquet: 1 Hr 7 Min
- Average OMNIBotics time: 36 Min
- Landmarking: 4 mins
- Pre-operative kinematics: 1 min
- Tibia cut block position and planning: 4 min
- Tibia resection and validation: 2 min
- Pre-operative joint balance: 2 min
- Femoral planning: 3 min
- Robotic alignment and calibration: 3 min
- Femoral resections: 4 min
- Post-operative joint balance: 3 min
- ▶ Trialing, Cementing and Final Alignment: 10 min

Conclusion: unique and adaptable

The BalanceBot is the next step in navigation; building upon the navigated base of the tibial cut, with real-time assessment of the functional status of the soft tissues; enabling reacquisition of data after releases; and predictive mapping of total knee behavior

Conclusion

Conclusion

- Good System
- Great (improved) outcomes
- How to combat "robots are inefficient" when presented with that argument.

- Every knee is different and presents its own unique challenges and compromises
- To provide robust patient specific guidelines to achieve optimal outcomes, more data is required:
 - Pre-operative disease
 - Activity
 - Psychological condition
 - Soft tissue characterization
 - Rehabilitation

• And all of this is needed on a large population!

- Integrated soft tissue balancing and robotics
 - Real time gap and resection planning
 - Surgical execution of desired post-operative joint balance
- Some clinical guidelines can be determined from clinical studies but more data is required
- Robotics (and data capture) can be efficient
- A wide variety of anatomy and soft tissue balance is present in the TKA population presenting a multitude of clinical challenges